Parameters and Drive Linac.

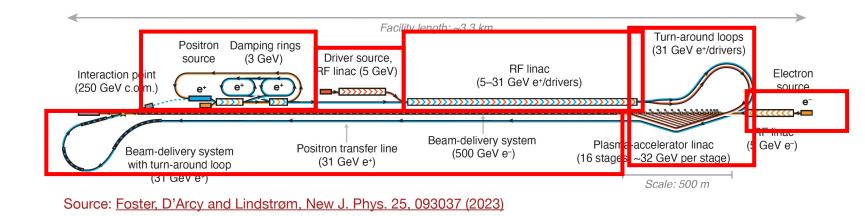
Parameters as a specification of HALHF subsystems, in particular the drive beam

Benno List HALHF accelerator meeting 18.12.23

HELMHOLTZ

Introduction

- Parameter Table summarizes most important design parameters of HALHF
- Starting point: Parameters as given in the paper, or as deduced from paper
- Future will see evolution / alternative configurations
- Start from Top-Level parameters, then propagate down to subsystems:
 - Design choices at top level become requirements for the subsystem level
- -> Requires a definition of subsystems


Version	0.1		
Date	18.12.23		
	Manalan	Listan	
	Version	History	
Version	Version Date	History Changes	
	Date		
Version 0.1	Date	Changes	
	Date	Changes	
	Date	Changes	

HAL	HF Mai	n Param	leters	
Quantity	Symbol	Unit	Baseline:	Paper
			e- e	+
Center of Mass Energy	E cm	GeV	250	
Luminosity				
Center of Mass Boost				
Beam Energy		GeV	500	31.2
Lorentz factor	γ		9.78E+05	6.12E+0
Drive Beam energy		GeV	31.25	
Collision rate	f _{rep}	Hz	100	
Number of bunches	n _b		100	
Av bunch frequency		kHz	10	
Bunch separation		ns	80	
Bunch population	N	×10 ¹⁰	1	
Bunch charge	q_b	nC	1.6	6
Av. Beam Current		μA	16.0	64
Av. Beam Power		MW	8.0	2
Beam Current in Pulse		mA	20.0	80
Beam Power in Pulse		GW	10.0	2
Bunch length in linac		μm	18	7
Bunch length at IP		μm	75	7
Energy spread		%	0.15	0.1
Norm. Horizontal emittance	γε _x	μm	160	1
Norm. Vertical emittance	γε _γ	nm	560	3
Geom. Horizontal emittance	εχ	nm	0.16	0.1
Norm. Vertical emittance	ε,	pm	0.57	0.5
IP horizontal beta function	6 _× *	mm	3.3	3
IP vertical beta function (no TF)	θ,*	mm	0.1	0

Subsystem Definition

A first attempt to define subsystems (i.e. a PBS)

- HALHF Accelerator Compex
 - Drive Beam Injector Facility
 - Positron Injector Facility
 - Drive Beam Linac Facility
 - Electron Injector Facility
 - Plasma Main Accelerator
 - Positron Transport
 - Beam Delivery System

Discussion points (for later?):

- Damping rings: part of positron injector or separate?
- Turn around / beam preparation for plasma: part of drive beam linac or plasma main accelerator?
- Dumps, Electron "recycler" for positron source: Part of BDS?

Subsystem Definition: Next level

 Defining the next PBS level(s) clarifies where subsystem boundaries are and which parameters are needed

HALHF Ad	celerator C	omplex		
	Drive Beam	Injector Facil	ity	
	Positron Inj	ector Facility		
		Positron sou	rce electron li	nac
		Positron Tar	get and captu	re
		Positron Pre	accelerator	
		Positron Dar	mping Rings	
	Drive Beam	Linac Facility		
		Drive Beam	linac	
		Drive beam	HLRF system	
	Electron Inj	ector Facility		
		Electron Sou		
		Electron Lina	ас	
	Plasma Ma	in Accelerator		
			launch and tui	maround
		Plasma cells		
		Drive beam	delay lines	
		Chicanes		
	Positron Tr	ansport		
	Beam Deliv	ery System	-	
		Electron BD	-	-h Churchallana
			Electron Bun	
			Electron Coll	imation Section
			Electron Extr	
		Positron BD	Electron Mai	n Dump
		Positron BD:	-	imation Section
			Positron Com	
			Positron Fina	
			Positron Extr	
		Positron Ma		n banip
		r ositi on IVid	in Dump	

Parameter Table

Main Parameter section

- Main design choices:
 - Beam energies
 -> CM energy, boost
 - Collision rate and bunch intensity -> beam current, power
 - Emittance and beta fkt at IP -> luminosity

Quantity	Symbol	Unit	Baseline: P	Paper					
			e- e+						
Center of Mass Energy	E cm	GeV	250						
Luminosity	L	10 ³⁴ cm ⁻² s ⁻¹	0.81						
Center of Mass Boost	Y см		2.13		Tab	e 2. Table of HALHF	parameters.		
					Machine parameters	Unit		Value	
Beam Energy		GeV	500	31.25	- Centre-of-mass energy	GeV		250	
Lorentz factor	Y		9.78E+05	6.12E+04	Centre-of-mass boost			2.13	
Drive Beam energy		GeV	31.25		Bunches per train			100	
						II-		100	
Collision rate	f _{rep}	Hz	100		Train repetition rate	Hz			
Number of bunches	n _b		100		Average collision rate	kHz $cm^{-2} s^{-1}$		$10 \\ 0.81 \times 10^{34}$	
Av bunch frequency		kHz	10		- Luminosity	cm s			
Bunch separation		ns	80		Luminosity fraction in top 1%	N 6347		57%	
		×10 ¹⁰			Estimated total power usage	MW		100	
	N		1	4	Colliding-beam parameters		e ⁻		e^+
	q _b	nC	1.6	6.4			U		
Av. Beam Current		μA	16.0	64.1	Beam energy	GeV	500		31.25
Av. Beam Power		MW	8.0	2.0 80.1	Bunch population	10^{10}	1		4
Beam Current in Pulse Beam Power in Pulse		mA GW	10.0	2.5	Bunch length in linacs (rms)	μ m	18		75
Beam Fower In Fuise		300	10.0	2.5	Bunch length at IP (rms)	μ m		75	
Bunch length in linac		μm	18	75	Energy spread (rms)	%		0.15	
Bunch length at IP		μm	75	75	Horizontal emittance (norm.)	μ m	160		10
Energy spread		%	0.15	0.15	Vertical emittance (norm.)	μm	0.56		0.03
			0.15	0.15	IP horizontal beta function	mm		3.3	
Norm. Horizontal emittance	γε,	μm	160	10	IP vertical beta function	mm		0.1	
	γε _γ	nm	560	35	IP horizontal beam size (rms)	nm		729	
	ε _x	nm	0.16	0.16	IP vertical beam size (rms)	nm		7.7	
			0.18	0.18	Average beam power delivered	MW	8		2
Norm. Vertical emittance	ε,	pm	0.57	0.57	Bunch separation	ns	0	80	-
IP horizontal beta function	<i>6</i> [*]	mm	3.3	3.3	Average beam current	μA	16	00	64
IP vertical beta function (no TF)			0.1	0.1	0	1 Contract			
P vertical beta function (no TF)	U _y	mm	0.1	0.1	-				
IP RMS horizontal beam size	σ_x^*	nm	735	735	_				
IP RMS vertical beam size (no T	σ_y^*	nm	7.6	7.6					
IP RMS horizontal angular dispe	σ _{x'} *	μrad	223	223					
IP RMS vertical angular dispersi	σ.*	μrad	76	76					

Drive Linac Parameters

- Main Design Parameters
 - Injection energy (transition from DB and positron sources to drive linac)
 - Number of drive bunches per positron bunch (plasma stages)
 - Bunch separation (must be consistent with overall main bunch separation!)

Note: within main bunch separation (80ns), number of DB bunches + positron bunch must fit; try to keep beam loading even

- Drive beam bunch population (from plasma accelerator)
- Average gradient -> length

RF linac parameters

Average gradient	$MV m^{-1}$	25
Wall-plug-to-beam efficiency	%	50
RF power usage	MW	47.5
Peak RF power per length	$MW m^{-1}$	21.4
Cooling req. per length	kWm^{-1}	20

Drive Linac Parameters					
			e- e+		
Injection energy		GeV	5		
Number of plasma stages			16		
Collision rate	f_{rep}	Hz	100		
Number of bunches	n _b		100		
Main bunch rate		kHz	10		
End Energy		GeV	31.25	31.2	
Main Bunch separation		ns	80		
Bunch separation		ns	4.0	2	
length of drive pulse		ns	64.0		
time for positron pulse		ns		16.	
Bunch population	N	×10 ¹⁰	2.7		
Bunch charge	q_b	nC	4.3	6.	
av current		μΑ	692.1	64.	
av current total		μΑ	756		
av power to beam		MW	18.2 1.7		
av power to beam		MW	20		
av current in pulse		mA	865	8	
Total current in pulse		mA	945		
Power to beam in pulse		GW	23	2	
Power to beam in pulse		GW	25		
Average gradient		MV/m	25		
Length		km	1.05	5	
Fill fraction			80%		
Gradient in structure		MV/m	31.25		
Av RF to beam in structure		kW/m	24		
RF to beam in pulse per m		MW/m	30		
RF Frequency		GHz	1.00)	
Bucket length		ns	1.00)	

Plasma Parameters

- Main Design Parameters:
 - Number of stages
 - Plasma density

-> gradient, spacing driver/witness beam, bunch length, transverse size

Transformer ratio / bunch charge ratio driver/witness beam

PWFA linac and drive-beam parameters

Number of stages		16
Plasma density	cm^{-3}	$7 imes 10^{15}$
In-plasma acceleration gradient	$GV m^{-1}$	6.4
Average gradient (incl. optics)	$GV m^{-1}$	1.2
Length per stage ^a	m	5
Energy gain per stage ^a	GeV	31.9
Initial injection energy	GeV	5
Driver energy	GeV	31.25
Driver bunch population	10^{10}	2.67
Driver bunch length (rms)	μ m	42
Driver average beam power	MW	21.4
Driver bunch separation	ns	5
Driver-to-wake efficiency	%	72
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	38
Wall-plug-to-beam efficiency	%	19
Cooling req. per stage length	$kW m^{-1}$	93

^a The first stage is half the length and has half the energy gain of the other stages (see section 5.4).

Plasma Parameters				
Number of stages			16	
Final energy			500	
Drive Beam Energy			31.25	
Injection energy		GeV	5	
			Stage 1	Stage 2-n
Stage acceleration		GeV	16	31.9
Ratio gain / DB energy			51%	102%
Plasma density		cm-3	7.00E+15	7.00E+15
Plasma freq	omega_b	Hz	4.72E+12	4.72E+12
Plasma wavenumber	kb	1/m	1.57E+04	1.57E+04
Plasma wavelength	lambda	um	399.08	399.08
Max gradient	E_WB	GV/m	8.03	8.03
Driver to wake efficiency		%	36%	72%
Drive beam energy dep		GeV	11	23
Outgoing drive beam energy		GeV	20	9
Gradient	g	GV/m	6.4	6.4
Fraction max gradient	0		80%	80%
cell length		m	2.5	5.0
Drive beam gradient		GV/m	4.5	4.5
Transformer ratio			1.4	1.4
Drive beam bunch length		um	42.0	42.0
Whitness beam bunch length		um	18.0	18.0

Plasma Parameters: Interplay with Drive Linac

- Assumptions:
 - Drive beam linac accelerates also positrons
 - Positrons RF phase same or similar to drive beam RF phase (note: could be different, e.g. to level beam loading) -> make this a parameter
 - -> drive beam energy same as positron energy (?)
- Number of plasma stages (16) / Transformer ratio (1)
 -> number of drive beam pulses per main bunch (16)
 -> bunch charge of drive beam bunch (2.7E10)
- Choices:
 - Drive beam RF frequency (1GHz? -> see slide)
 - Bunch spacing in drive linac (5ns)
 -> drives layout / size of delay lines
- Bunch spacing to positron bunch (6ns = 4ns*4/2.7?) DESY. | Parameters and Drive Linac | Benno List, 18.12.2023

- Results
 - Bunch separation of main beam ("80ns")
 -> needs a bit of adjustment
 - Drive beam current, pulse length (800mA, 8us)
- More plasma stages: lower transformer ratio, lower drive beam charge, more drive beam bunches
 -> optimize for overall efficiency
- Required drive bunch length:
 - Not too different from positron bunch length
 - Compatible with drive beam linac parameters / technology

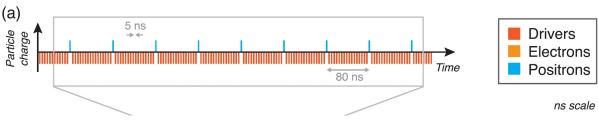
Drive Beam Linac: Requirements from Plasma Acceleration

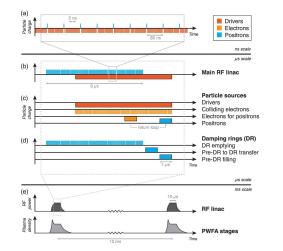
- What are the requirements on drive beam from the plasma accelerator?
 - Bunch length: 42um
 -> might require bunch compressor?
 - Normalised emittance? 100um OK?
 - Energy spread? Energy chirp?
 - Current profile?
 - Beam stability / jitter?

- Requirements on positron beam / bunches:
 - Bunch length: 75um
 - Emittance: 10um(!)
 - Energy spread: 0.15%

Plasma Parameters: Interplay with BDS

- Plasma density
 - -> Plasma wavenumber
 - -> transverse and longitudinal beam size
- For ne=7E15/cm3, bunch length 18um
- At IP: Bunch length 75um
 -> requires bunch lengthening by factor 4
- Different (lower) plasma density


 > longer cells (-> lower power density)
 -> larger bunches, relaxed transverse tolerances, less bunch lengthening required
- -> but larger energy spread at IP -> chromaticity?


- Bunch lengthening by energy compressor:
 - Chicane with sizeable R56
 - Dechirper (Plasma???)

Remark: Shift between positrons and drive beam

- Shift between positrons and drive beam necessitated by layout of beamlines
- Enormous variation of beam loading in drive linac
 -> negative impact on RF, efficiency, etc
 -> Can this be avoided by different beamline layout? (delay loop for drive beam)?
- 2nd observation: positron bunches have larger bunch intensity (4E10 vs 2.7E10) than drive bunches

-> levelize beam loading by larger gap (10ns vs 5ns)?

Figure 3. Bunch-train pattern, showing (a) the shortest relevant time structure (ns-scale) of the driver trains, interspersed with positron bunches, during acceleration in the the main RF linac, which (b) continues for the duration of a burst (μ s scale). The positron train must be shifted somewhat forward in time since it will traverse an additional turn-around loop. (c) Drivers, colliding electrons, and electron bunches delivered to the positron source are created at appropriate times. (d) The produced positrons are extracted from the damping ring at the appropriate separation, after which the pre-damping ring transfers its bunches to the damping ring, followed by the pre-damping ring being refilled. (e) The RF linac and PWFA stages operate with a ~10 μ s flattop at a repetition rate of 100 Hz (ms scale).

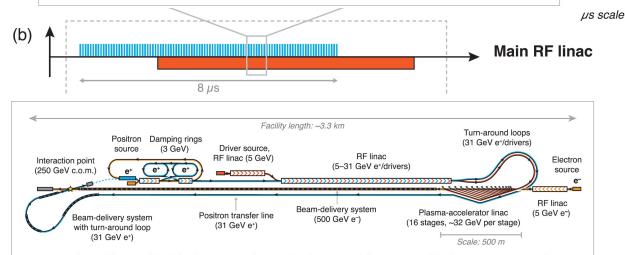


Figure 1. Schematic layout of the hybrid asymmetric linear Higgs factory. Particle sources provide electrons (orange), positrons

DESY. | Parameters and Drive Linac | Benno List, 18.12.2023

Drive Beam Accelerator: Basic Observations

- Assuming Input energy 5GeV, output 31.25GeV, 16x2.7E10 drive bunches, 4E10 main e+ bunch, 10kHz average bunch rate (100Hz x 100):
 20 MW RF to beam (in pulse: 25GW)
- Drive beam linac delivers 84% of the total beam power (rest in 5GeV linacs) – power does not depend on bunch pattern, frequency, … it is just the overall beam power
- This is a lot. Requires e.g. 500 x 50MW klystrons, modulators, couplers etc
- Length / gradient is not only limited by achievable gradient, but by amount of power that can be handled per meter

 Drive beam linac should not dominate site length -> push for high gradient (25MV/m-ish)

Drive Beam Linac: Consider CLIC Design

- CLIC Drive Beam Linac: Travelling wave, fully loaded, 93% RF to beam!
- Requires careful matching of cavity geometry (iris, number of cells), bunch charge / beam current, gradient -> very little flexibility

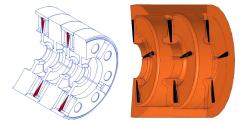


Fig. 5.50: Conceptual view of two SICA structures; left: The 3 GHz CTF3 structure; right: The baseline structure for the CLIC Drive Beam Accelerator at 1 GHz.

Fig. 5.51: Baseline SICA structure for the CLIC Drive Beam accelerator consisting of 21 cells (19 accelerating cells and a coupling cell at each end). The total length is 2.4 m.

CLIC TDR, CERN-2012-007

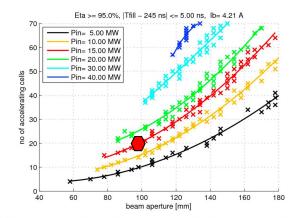


Fig. 5.52: Structure optimisation: For several input powers (colour coded) and beam pipe apertures (diameter), the number of accelerating cells and the group velocity in each cell can be chosen such that the RF-to-beam efficiency is above 95% while the fill time is 245 ± 5 ns. The CLIC DBA baseline structure has a beam pipe aperture of 98 mm and is made of 19 accelerating cells.

Drive Beam Parameters CLIC and HALHF

Parameter	CLIC	HALHF
Beam current (A)	4.2	0.86
Bunch charge (nC)	8	4.3
Bunch spacing (ns)	0.5	5
RF pulse length (us)	140	8-10
RF to beam efficiency (%)	95	?
Klystron power (MW)	20	?
Frequency (GHz)	1	1;2; ?
Gradient (MV/m)	1.5	25
Drive Power/m (MW)	7.8	21.4
Total voltage (GV)	2.37	31

Detailed RF-structure parameters missing to evaluate

S.Doebert, CERN, SY-RF

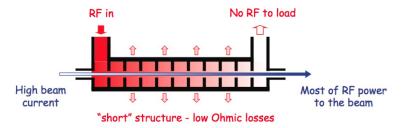
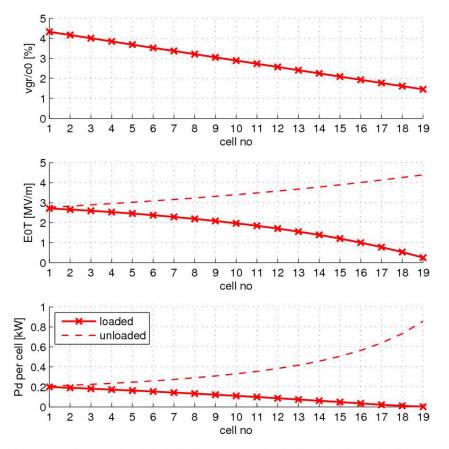



Fig. 2.9: Acceleration of a beam in a travelling wave structure. Under full beam loading operation no RF power is leaving the structure

CLIC Drive Beam: Structures

Fig. 5.53: Electromagnetic properties of the CLIC DBA structure for the 19 accelerating cells. Top: group velocity profile in reference to the speed of light; middle: the accelerating gradient for the loaded (solid line, beam current 4.2 A) and the unloaded (dash line) case; bottom: average dissipated power in each cell for the loaded and unloaded case for an RF duty cycle of 7.5‰.

	,	3 GHz SIC	٨		I GHz SIC	•	•
	-	(CTF3)	A		(CLIC)	A	
Operating frequency [MHz]		2998.55			999.5		-
Beam current [A]		3.5			4.2		
Iris thickness [mm]		6.0			18		30MV/m
Aperture diameter [mm]		34.0			98		30101 0 / 111
Phase advance / cell [°]		120			120		surface field
Cell length [mm]		33.32			99.98		Suilace lielu
Number of cells / structure		32			21		for 1.7MV/m
Structure length (incl. couplers) [m]		1.22			2.40		
Fill time [ns]		98			245		mean acc. Gradient
Input power [MW]		30			15	_	
Accelerating voltage unloaded [MV]		13.3			6.6		
Accelerating voltage loaded [MV]		7.9			3.4		
Peak surface field [MV/m]		33			30		> ao to higher frog?
Beam loading [%]		97.4			99.9		-> go to higher freq?
Efficiency [%]		92.5			95		2GHz?
	1st cell	mid cell	last cell	1st cell	mid cell	last cell	
Cavity diameter [mm]	82.95	79.00	74.39	240.77	231.40	215.56	-
Nose cone size [mm]	0.00	2.53	4.66	4.352	9.418	16.191	
Group velocity accelerating mode [% c]	5.19	3.49	2.36	4.32	2.89	1.45	
Q_0 accelerating mode	13 860	12771	10950	23 810	21923	16108	
R'/Q (linac definition) [Ω/m]	3143	3292	3165	1107	1142	1004	
Frequency 2 nd monopole [MHz]				2292	2369	2451	
Phase advance 2 nd monopole [°]				84.8	75.6	65.8	
$Q_0 2^{\rm nd}$ monopole mode				45 540	49710	51850	
$\tilde{R'}/Q$ 2 nd monopole [Ω/m]				853	914	932	
Frequency 1 st dipole [MHz]	4147	4197	4097	1344	1375	1409	
Phase advance 1 st dipole [°]				161	165	169	
$Q_{\rm SiC}$ 1 st dipole mode	17.5	6.2	5.8	13	19	29	
Kick factor 1 st dipole [V/pC/m ²]	555	668	843	66.9	81.9	92.3	
Frequency 2 nd dipole [MHz]	4243	4279	4379	1517	1602	1783	
Phase advance 2 nd dipole [°]				178	168	146	
$Q_{\rm SiC}$ 2 nd dipole mode	3.4	17.3	24.4	6	5	6	
Kick factor 2 nd dipole [V/pC/m ²]	206	254	197	19.3	14.5	4.0	
Total number of structures		18			819		
		107			0070		

 Table 5.22: Parameters of the SICA Drive Beam accelerating structures

CLIC TDR, CERN-2012-007

Total energy gain [MeV]

127

2370

CLIC Drive Beam Linac Parameters

Table 4.1: Main parameters of DBA and DBA injector
--

Parameter	Symbol	Value	Unit
Injector parameters			
Beam energy	E	50	MeV
Bunch length	$\sigma_{\rm b}$	3	mm
Energy spread r.m.s.	$\Delta E/E$	< 1	%
Normalized transverse emittance	γε	< 100	μm
Drive Beam linac parameters			
RF frequency	<i>f</i> _{RF}	1	GHz
No. of structures in injector	$N_{\rm s.INJ}$	12	
No. of structures at DBL1	$N_{\rm s.DBL1}$	92	_
No. of structures at DBL2	N _{s.DBL2}	715	-
Final beam energy	E_{f}	2.4	GeV
Bunch charge	q_{b}	8.4	nC
Initial bunch length	$\sigma_{\mathrm{b,i}}$	3	mm
Final bunch length	$\sigma_{\mathrm{b,f}}$	1	mm
Bunch separation	$\Delta t_{\rm b}$	0.6	m
Pulse length	$ au_{\mathrm{pulse}}$	142	μs
No. of bunches /pulse	$N_{\rm b}$	70882	-
Energy spread	$\Delta E/E_{\rm f}$	< 0.35	%
Normalized r.m.s. transverse emittance	γε	< 110	μm

	1	3 GHz SIC (CTF3)	Α	1	GHz SIC (CLIC)	Α	
Operating frequency [MHz]		2998.55			999.5		-
Beam current [A]		3.5			4.2		
Iris thickness [mm]		6.0			18		30MV/
Aperture diameter [mm]		34.0			98		30101 07
Phase advance / cell [°]		120			120		surfac
Cell length [mm]		33.32			99.98		Sunac
Number of cells / structure		32			21		for 1.7
Structure length (incl. couplers) [m]		1.22			2.40		101 1.7
Fill time [ns]		98			245		mean
Input power [MW]		30			15	_	mean
Accelerating voltage unloaded [MV]		13.3			6.6		
Accelerating voltage loaded [MV]		7.9			3.4		
Peak surface field [MV/m]		33			30		> ao t
Beam loading [%]		97.4			99.9		-> go t
Efficiency [%]		92.5			95		2GHz
	1st cell	mid cell	last cell	1st cell	mid cell	last cell	
Cavity diameter [mm]	82.95	79.00	74.39	240.77	231.40	215.56	-
Nose cone size [mm]	0.00	2.53	4.66	4.352	9.418	16.191	
Group velocity accelerating mode $[\% c]$	5.19	3.49	2.36	4.32	2.89	1.45	
Q_0 accelerating mode	13 860	12771	10950	23 810	21923	16108	
R'/Q (linac definition) [Ω /m]	3143	3292	3165	1107	1142	1004	
Frequency 2nd monopole [MHz]				2292	2369	2451	
Phase advance 2 nd monopole [°]				84.8	75.6	65.8	
$Q_0 2^{\rm nd}$ monopole mode				45 540	49710	51850	
$\tilde{R'}/Q 2^{nd}$ monopole [Ω/m]				853	914	932	
Frequency 1st dipole [MHz]	4147	4197	4097	1344	1375	1409	
Phase advance 1 st dipole [°]				161	165	169	
$Q_{\rm SiC}$ 1 st dipole mode	17.5	6.2	5.8	13	19	29	
Kick factor 1 st dipole [V/pC/m ²]	555	668	843	66.9	81.9	92.3	
Frequency 2nd dipole [MHz]	4243	4279	4379	1517	1602	1783	
Phase advance 2 nd dipole [°]				178	168	146	
$Q_{\rm SiC}$ 2 nd dipole mode	3.4	17.3	24.4	6	5	6	
Kick factor 2 nd dipole [V/pC/m ²]	206	254	197	19.3	14.5	4.0	
Total number of structures		18			819		
Total energy gain [MeV]		127			2370		

30MV/m surface field for 1.7MV/m mean acc. Gradient

-> go to higher freq? 2GHz?

Superconducting drive linac?

The average power is the challenge (not the gradient, ¹)
 TESLA type couplers handle order of kW of average power: one coupler per continue (4.2.4...)

- TESLA type couplers handle order of kW of average power; one coupler per cavity (1.04m)
 -> limits power to ~2kW/m 5kW/m
 -> 10km 4km for a 20MW SC linac
- Conclusion:

a 10km SC linac can deliver a 250-300GeV beam for physics, or possibly the drive beam for a 500GeV plasma driven beam

- A SC drive linac would require a completely different coupler development which exists, e.g. EIC
- Different time structure (longer bunch distances, lower current) for SC linac completely new game
- Generically, drive linac has very high current
 -> ideal for NC linac (ratio of power to beam vs cavity wall losses favourable)

Summary / Conclusions

- Parameter Excel document has been set up
 -> distribution? Start with DESY synch & share?
- Definition of PBS / system boundaries needs to continue
- Look at interplay between subsystem design choices, in particular between plasma and conventional accelerator

Kontakt

Deutsches Elektronen-	Vorname Name		
Synchrotron DESY	Abteilung		
	E-mail		
www.desy.de	Telefon		