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Introduction

3

Over the past several years, the field of radio frequency superconductivity (SRF)
for particle accelerators is going through a period of Renaissance.

5 years ago, most of the community thought that the science and technology
reached maturity (even though we lacked understanding of some basic physics)
and one can achieve only incremental gains in the niobium cavity performance.
The field tended to be mostly technological with only few researchers trying to
study fundamental issues of SRF in niobium. Big improvement steps were thought
to be possible only with developing alternative materials (e.g. Nb;Sn).

Recent discoveries of nitrogen doping and infusion, magnetic flux expulsion,
opened new horizons and revived interest to studies of SRF basics, both
experimental and theoretical. More unexpected and intriguing results have been
obtained.

In this talk I will try to shed light upon some exciting recent results, show new
trends (Fermilab-centric view) and hopefully inspire young generation to turn their
attention to this field of research.
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Discovery of superconductivity: April 8th of 1911

A Discovered in 1911 by Heike Kamerlingh Onnes and Gilles Holst after Onnes was
able to liquefy helium in 1908 (Nobel Prize in 1913).
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Superconducting elements
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Superconducting state

A The superconducting state is characterized

(@)

y the critical temperature T, and field H,

e
Hc(T) = HC(O)C%I.-
e
A The external field is expelled from a superconductor if H,,, < H. for Type | superconductors.

A For Type Il superconductors the external field can partially penetrate for H,,, < H., and will
completely penetrate at H,.
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state
0 H, H 0 H, H. H,H
Complete Meissner effect High-field partial Meissner effect
in type-l superconductors in type-ll superconductors

* Type-l: Meissner state B=H + M =0 for H < H_; normal state at H>H_
* Type-ll: Meissner state B=H + M = 0 for H < H_,; partial flux penetration for
H., <H <H,,; normal state for H>H_,
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Theories explaining superconductivity

A Early developments: two-fluid model and London equations .

A Phenomenological Ginzburg-Landau (GL) theory (1950, Nobel Prize in 2003) generalized
London equation to nonlinear problems.

A Microscopic theory of superconductivity was developed by Bardeen, Cooper and Schrieffer
(BCS) in 1957 (Nobel Prize in 1972).

What do we need to recollect?

A Magnetic field does not stop abruptly, but penetrates into the material with exponential
attenuation. The (London) penetration depth / is quite small, 20 T 50 nm.

A According to BCS theory not single electrons, but (Cooper ) pairs are carriers of the
supercurrent. However, the penetration depth remains unchanged.

A The BCS ground state is characterized by the macroscopic wave function and a ground
state energy that is separated from the energy levels of unpaired electrons by an energy

gap. In order to break a pair an energy of 2Dis needed: energy § (@)

V
single electrons

energy gap 24

BCS ground state
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Theories explaining superconductivity (2)

A GL theory introduced coherence length xi a new scale of special variation of the superfluid
density and superconducting gap.

A Also introduced is a dimensionless GL parameter k < x, which is independent of

temperature.
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What happens if AC field is applied?

A At 0<T<T, notall electrons are bonded into Cooper pairs. The density of unpaired,
Anor mal 0 el ectr Boitzsmarifax:torgi ven by the

, D @
Mnormal eXp@ kT O
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A Cooper pairs move without resistance, and thus dissipate no power. In DC case the lossless
Cooper pairs short out the field, hence the normal electrons are not accelerated and the SC
is lossless even for T > 0 K.

A The Cooper pairs do nonetheless have an inertial mass , and thus they cannot follow an AC
electromagnetic fields instantly and do not shield it perfectly. A residual EM field remains
and acts on the unpaired electrons as well, therefore causing power dissipation
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What is RF superconductivity for accelerators?

A Radio frequency (RF) superconductivity for particle accelerators is a branch of accelerator
physics and engineering dealing with application of superconducting materials to
acceleration of charged particles in resonant RF cavities.

1 Input RF power at 1.3 GHz Slowed down by factor of approximately 4%10

Niobium

< ~1m >

A The science part of this field deals with investigating limitations of and developing methods
to improve the SRF cavity performance. In particular, how to reduce power dissipation in

SRF cavities and improve accelerating gradients s i
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